Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Vaccine ; 41(20): 3233-3246, 2023 05 11.
Article in English | MEDLINE | ID: covidwho-2295171

ABSTRACT

The ongoing SARS-CoV-2 pandemic is controlled but not halted by public health measures and mass vaccination strategies which have exclusively relied on intramuscular vaccines. Intranasal vaccines can prime or recruit to the respiratory epithelium mucosal immune cells capable of preventing infection. Here we report a comprehensive series of studies on this concept using various mouse models, including HLA class II-humanized transgenic strains. We found that a single intranasal (i.n.) dose of serotype-5 adenoviral vectors expressing either the receptor binding domain (Ad5-RBD) or the complete ectodomain (Ad5-S) of the SARS-CoV-2 spike protein was effective in inducing i) serum and bronchoalveolar lavage (BAL) anti-spike IgA and IgG, ii) robust SARS-CoV-2-neutralizing activity in the serum and BAL, iii) rigorous spike-directed T helper 1 cell/cytotoxic T cell immunity, and iv) protection of mice from a challenge with the SARS-CoV-2 beta variant. Intramuscular (i.m.) Ad5-RBD or Ad5-S administration did not induce serum or BAL IgA, and resulted in lower neutralizing titers in the serum. Moreover, prior immunity induced by an intramuscular mRNA vaccine could be potently enhanced and modulated towards a mucosal IgA response by an i.n. Ad5-S booster. Notably, Ad5 DNA was found in the liver or spleen after i.m. but not i.n. administration, indicating a lack of systemic spread of the vaccine vector, which has been associated with a risk of thrombotic thrombocytopenia. Unlike in otherwise genetically identical HLA-DQ6 mice, in HLA-DQ8 mice Ad5-RBD vaccine was inferior to Ad5-S, suggesting that the RBD fragment does not contain a sufficient collection of helper-T cell epitopes to constitute an optimal vaccine antigen. Our data add to previous promising preclinical results on intranasal SARS-CoV-2 vaccination and support the potential of this approach to elicit mucosal immunity for preventing transmission of SARS-CoV-2.


Subject(s)
COVID-19 , Viral Vaccines , Humans , Animals , Mice , Spike Glycoprotein, Coronavirus/genetics , COVID-19 Vaccines , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , SARS-CoV-2 , Administration, Intranasal , Disease Models, Animal , Immunoglobulin A
2.
Lancet Diabetes Endocrinol ; 11(4): 251-260, 2023 04.
Article in English | MEDLINE | ID: covidwho-2266781

ABSTRACT

BACKGROUND: Some epidemiological studies have suggested an increase in incidence of type 1 diabetes during the COVID-19 pandemic, however the mechanism(s) behind such an increase have yet to be identified. In this study we aimed to evaluate the possible role of the SARS-CoV-2 virus in the reported increase in the rate of type 1 diabetes. METHODS: In this observational cohort study using data from the Finnish Pediatric Diabetes Register (FPDR), we assessed the incidence of type 1 diabetes (number of children with newly diagnosed type 1 diabetes per 100 000 person-years during the pandemic and the reference period) during the first 18 months of the COVID-19 pandemic in children in Finland younger than 15 years old compared with a reference period which included three corresponding pre-pandemic periods also obtained from the FPDR. Children with confirmed monogenic diabetes were excluded. We also compared the phenotype and HLA genotype of the disease between these two cohorts, and analysed the proportion of newly diagnosed people with type 1 diabetes testing positive for SARS-CoV-2 antibodies. FINDINGS: 785 children and adolescents in Finland were diagnosed with type 1 diabetes from March 1, 2020, to Aug 31, 2021. In the reference period, which comprised three similar 18-month terms (from March 1, 2014, to Aug 31, 2015; March 1, 2016, to Aug 31, 2017; and March 1, 2018, to Aug 31, 2019) 2096 children and adolescents were diagnosed. The incidence of type 1 diabetes was 61·0 per 100 000 person-years (95% CI 56·8-65·4) among children younger than 15 years old during the pandemic, which was significantly higher than during the reference period (52·3 per 100 000 person-years; 50·1-54·6). The incidence rate ratio adjusted for age and sex for the COVID-19 pandemic was 1·16 (1·06-1·25; p=0·0006) when compared with the reference period. The children diagnosed during the COVID-19 pandemic had more often diabetic ketoacidosis (p<0·001), had a higher HbA1c (p<0·001), and tested more frequently positive for glutamic acid debarboxylase antibodies at diagnosis (p<0·001) than those diagnosed before the pandemic. There were no significant differences in the distribution of HLA genotypes between the two periods. Only five of those diagnosed during the pandemic (0·9%) of 583 tested positive for infection-induced SARS-CoV-2 antibodies. INTERPRETATION: Children and adolescents diagnosed with type 1 diabetes during the pandemic had a more severe disease at diagnosis. The observed increase in type 1 diabetes incidence during the first 18 months could be a consequence of lockdown and physical distancing rather than a direct effect of SARS-CoV-2 infection. FUNDING: Helsinki University Hospital Research Funds, EU Horizon 2020 (Versatile emerging infectious disease observatory project), Academy of Finland, Sigrid Jusélius Foundation, Jane & Aatos Erkko Foundation, and Medicinska understödsföreningen Liv och Hälsa. TRANSLATIONS: For the Finnish and Swedish translations of the abstract see Supplementary Materials section.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 1 , Child , Humans , SARS-CoV-2 , Diabetes Mellitus, Type 1/epidemiology , COVID-19/epidemiology , Finland/epidemiology , Pandemics , Communicable Disease Control
3.
Nat Commun ; 14(1): 1637, 2023 03 24.
Article in English | MEDLINE | ID: covidwho-2270479

ABSTRACT

The emergence of increasingly immunoevasive SARS-CoV-2 variants emphasizes the need for prophylactic strategies to complement vaccination in fighting the COVID-19 pandemic. Intranasal administration of neutralizing antibodies has shown encouraging protective potential but there remains a need for SARS-CoV-2 blocking agents that are less vulnerable to mutational viral variation and more economical to produce in large scale. Here we describe TriSb92, a highly manufacturable and stable trimeric antibody-mimetic sherpabody targeted against a conserved region of the viral spike glycoprotein. TriSb92 potently neutralizes SARS-CoV-2, including the latest Omicron variants like BF.7, XBB, and BQ.1.1. In female Balb/c mice intranasal administration of just 5 or 50 micrograms of TriSb92 as early as 8 h before but also 4 h after SARS-CoV-2 challenge can protect from infection. Cryo-EM and biochemical studies reveal triggering of a conformational shift in the spike trimer as the inhibitory mechanism of TriSb92. The potency and robust biochemical properties of TriSb92 together with its resistance against viral sequence evolution suggest that TriSb92 could be useful as a nasal spray for protecting susceptible individuals from SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Female , Animals , Mice , Humans , Administration, Intranasal , COVID-19/prevention & control , Pandemics , Antibodies, Neutralizing , Mice, Inbred BALB C , Antibodies, Viral , Spike Glycoprotein, Coronavirus/genetics
4.
Med Microbiol Immunol ; 211(4): 173-183, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1888865

ABSTRACT

We examined the usefulness of dried spot blood and saliva samples in SARS-CoV-2 antibody analyses. We analyzed 1231 self-collected dried spot blood and saliva samples from healthcare workers. Participants filled in a questionnaire on their COVID-19 exposures, infections, and vaccinations. Anti-SARS-CoV-2 IgG, IgA, and IgM levels were determined from both samples using the GSP/DELFIA method. The level of exposure was the strongest determinant of all blood antibody classes and saliva IgG, increasing as follows: (1) no exposure (healthy, non-vaccinated), (2) exposed, (3) former COVID-19 infection, (4) one vaccination, (5) two vaccinations, and (6) vaccination and former infection. While the blood IgG assay had a 99.5% sensitivity and 75.3% specificity to distinguish participants with two vaccinations from all other types of exposure, the corresponding percentages for saliva IgG were 85.3% and 65.7%. Both blood and saliva IgG-seropositivity proportions followed similar trends to the exposures reported in the questionnaires. Self-collected dry blood and saliva spot samples combined with the GSP/DELFIA technique comprise a valuable tool to investigate an individual's immune response to SARS-CoV-2 exposure or vaccination. Saliva IgG has high potential to monitor vaccination response wane, since the sample is non-invasive and easy to collect.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/diagnosis , Humans , Immunoglobulin G , Saliva
5.
Front Pharmacol ; 12: 755600, 2021.
Article in English | MEDLINE | ID: covidwho-1674370

ABSTRACT

Repurposing of currently available drugs is a valuable strategy to tackle the consequences of COVID-19. Recently, several studies have investigated the effect of psychoactive drugs on SARS-CoV-2 in cell culture models as well as in clinical practice. Our aim was to expand these studies and test some of these compounds against newly emerged variants. Several antidepressants and antipsychotic drugs with different primary mechanisms of action were tested in ACE2/TMPRSS2-expressing human embryonic kidney cells against the infection by SARS-CoV-2 spike protein-dependent pseudoviruses. Some of these compounds were also tested in human lung epithelial cell line, Calu-1, against the first wave (B.1) lineage of SARS-CoV-2 and the variants of concern, B.1.1.7, B.1.351, and B.1.617.2. Several clinically used antidepressants, including fluoxetine, citalopram, reboxetine, imipramine, as well as antipsychotic compounds chlorpromazine, flupenthixol, and pimozide inhibited the infection by pseudotyped viruses with minimal effects on cell viability. The antiviral action of several of these drugs was verified in Calu-1 cells against the B.1 lineage of SARS-CoV-2. By contrast, the anticonvulsant carbamazepine, and novel antidepressants ketamine, known as anesthetic at high doses, and its derivatives as well as MAO and phosphodiesterase inhibitors phenelzine and rolipram, respectively, showed no activity in the pseudovirus model. Furthermore, fluoxetine remained effective against pseudoviruses with common receptor binding domain mutations, N501Y, K417N, and E484K, as well as B.1.1.7 (alpha), B.1.351 (beta), and B.1.617.2 (delta) variants of SARS-CoV-2. Our study confirms previous data and extends information on the repurposing of these drugs to counteract SARS-CoV-2 infection including different variants of concern, however, extensive clinical studies must be performed to confirm our in vitro findings.

6.
Viruses ; 13(11)2021 11 11.
Article in English | MEDLINE | ID: covidwho-1512701

ABSTRACT

Small animal models are of crucial importance for assessing COVID-19 countermeasures. Common laboratory mice would be well-suited for this purpose but are not susceptible to infection with wild-type SARS-CoV-2. However, the development of mouse-adapted virus strains has revealed key mutations in the SARS-CoV-2 spike protein that increase infectivity, and interestingly, many of these mutations are also present in naturally occurring SARS-CoV-2 variants of concern. This suggests that these variants might have the ability to infect common laboratory mice. Herein we show that the SARS-CoV-2 beta variant attains infectibility to BALB/c mice and causes pulmonary changes within 2-3 days post infection, consistent with results seen in other murine models of COVID-19, at a reasonable virus dose (2 × 105 PFU). The findings suggest that common laboratory mice can serve as the animal model of choice for testing the effectiveness of antiviral drugs and vaccines against SARS-CoV-2.


Subject(s)
COVID-19/virology , Disease Models, Animal , SARS-CoV-2 , Animals , Brain/virology , COVID-19/pathology , Female , Inflammation , Lung/pathology , Lung/virology , Male , Mice, Inbred BALB C , Nose/virology , Pulmonary Alveoli/pathology , SARS-CoV-2/isolation & purification
7.
mBio ; 12(3)2021 05 18.
Article in English | MEDLINE | ID: covidwho-1234283

ABSTRACT

The ongoing coronavirus disease 2019 (COVID-19) pandemic has seen an unprecedented increase in the demand for rapid and reliable diagnostic tools, leaving many laboratories scrambling for resources. We present a fast and simple assay principle for antigen detection and demonstrate its functionality by detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigens in nasopharyngeal swabs. The method is based on the detection of SARS-CoV-2 nucleoprotein (NP) and S protein (SP) via time-resolved Förster resonance energy transfer (TR-FRET) with donor- and acceptor-labeled polyclonal anti-NP and -SP antibodies. Using recombinant proteins and cell culture-grown SARS-CoV-2, the limits of detection were established as 25 pg of NP or 20 infectious units (IU) and 875 pg of SP or 625 IU. Testing reverse transcription-PCR (RT-PCR)-positive (n = 48, with cycle threshold [CT ] values from 11 to 30) or -negative (n = 96) nasopharyngeal swabs demonstrated that the assay yielded positive results for all samples with CT values of <25 and for a single RT-PCR-negative sample. Virus isolation from the RT-PCR-positive nasopharyngeal swabs showed a strong association between the presence of infectious virus and a positive antigen test result. The NP-based assay showed 97.4% (37/38) sensitivity and 100% (10/10) specificity in comparison with virus isolation and 77.1% (37/48) sensitivity and 99.0% (95/96) specificity in comparison with SARS-CoV-2 RT-PCR. The assay is performed in a buffer that neutralizes SARS-CoV-2 infectivity, and the assay is relatively simple to set up as an "in-house" test. Here, SARS-CoV-2 served as the model pathogen, but the assay principle is applicable to other viral infections, and the test format could easily be adapted to high-throughput testing.IMPORTANCE PCR is currently the gold standard for the diagnosis of many acute infections. While PCR and its variants are highly sensitive and specific, the time from sampling to results is measured in hours at best. Antigen tests directly detect parts of the infectious agent, which may enable faster diagnosis but often at lower sensitivity and specificity. Here, we describe a technique for rapid antigen detection and demonstrate the test format's potential using SARS-CoV-2 as the model pathogen. The 10-min test, performed in a buffer that readily inactivates SARS-CoV-2, from nasopharyngeal samples identified 97.4% (37/38) of the samples from which we could isolate the virus. This suggests that the test performs well in identifying patients potentially shedding the virus. Although SARS-CoV-2 served as the model pathogen to demonstrate proof of concept, the test principle itself would be applicable to a wide variety of infectious and perhaps also noninfectious diseases.


Subject(s)
Antigens, Viral/analysis , COVID-19 Serological Testing/methods , Fluorescence Resonance Energy Transfer , SARS-CoV-2/isolation & purification , Antigens, Viral/immunology , COVID-19/diagnosis , COVID-19/virology , Coronavirus Nucleocapsid Proteins/analysis , Coronavirus Nucleocapsid Proteins/immunology , Humans , Limit of Detection , Nasopharynx/virology , Phosphoproteins/analysis , Phosphoproteins/immunology , Proof of Concept Study , Recombinant Proteins/immunology , SARS-CoV-2/immunology , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus/analysis , Spike Glycoprotein, Coronavirus/immunology , Time Factors
8.
Int J Environ Res Public Health ; 18(6)2021 03 12.
Article in English | MEDLINE | ID: covidwho-1143499

ABSTRACT

Transmission of respiratory viruses is a complex process involving emission, deposition in the airways, and infection. Inhalation is often the most relevant transmission mode in indoor environments. For severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the risk of inhalation transmission is not yet fully understood. Here, we used an indoor aerosol model combined with a regional inhaled deposited dose model to examine the indoor transport of aerosols from an infected person with novel coronavirus disease (COVID-19) to a susceptible person and assess the potential inhaled dose rate of particles. Two scenarios with different ventilation rates were compared, as well as adult female versus male recipients. Assuming a source strength of 10 viruses/s, in a tightly closed room with poor ventilation (0.5 h-1), the respiratory tract deposited dose rate was 140-350 and 100-260 inhaled viruses/hour for males and females; respectively. With ventilation at 3 h-1 the dose rate was only 30-90 viruses/hour. Correcting for the half-life of SARS-CoV-2 in air, these numbers are reduced by a factor of 1.2-2.2 for poorly ventilated rooms and 1.1-1.4 for well-ventilated rooms. Combined with future determinations of virus emission rates, the size distribution of aerosols containing the virus, and the infectious dose, these results could play an important role in understanding the full picture of potential inhalation transmission in indoor environments.


Subject(s)
COVID-19 , Coronavirus Infections , Coronavirus , Aerosols , Female , Humans , Male , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL